Reversible inactivation of the dorsal nucleus of the lateral lemniscus reveals its role in the processing of multiple sound sources in the inferior colliculus of bats.

نویسندگان

  • R M Burger
  • G D Pollak
چکیده

Neurons in the inferior colliculus (IC) that are excited by one ear and inhibited by the other [excitatory-inhibitory (EI) neurons] can code interaural intensity disparities (IIDs), the cues animals use to localize high frequencies. Although EI properties are first formed in a lower nucleus and imposed on some IC cells via an excitatory projection, many other EI neurons are formed de novo in the IC. By reversibly inactivating the dorsal nucleus of the lateral lemniscus (DNLL) in Mexican free-tailed bats with kynurenic acid, we show that the EI properties of many IC cells are formed de novo via an inhibitory projection from the DNLL on the opposite side. We also show that signals excitatory to the IC evoke an inhibition in the opposite DNLL that persists for tens of milliseconds after the signal has ended. During that period, strongly suppressed EI cells in the IC are deprived of inhibition from the DNLL and respond to binaural signals as weakly inhibited or monaural cells. By relieving inhibition at the IC, we show that an initial binaural signal essentially reconfigures the circuit and thereby allows IC cells to respond to trailing binaural signals that were inhibitory when presented alone. Thus, DNLL innervation creates a property in the IC that is not possessed by lower neurons or by collicular EI neurons that are not innervated by the DNLL. That property is a change in responsiveness to binaural signals, a change dependent on the reception of an earlier sound. These features suggest that the circuitry linking the DNLL with the opposite central nucleus of the IC is important for the processing of IIDs that change over time, such as the IIDs generated by moving stimuli or by multiple sound sources that emanate from different regions of space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibitory influence of the dorsal nucleus of the lateral lemniscus on binaural responses in the rat's inferior colliculus.

The contribution of the dorsal nucleus of the lateral lemniscus (DNLL) to binaural processing was examined by recording single-unit activity in the rat's inferior colliculus before, during, and after a reversible block of the excitatory activity in DNLL by local injection of kynurenic acid. Recordings were made from the central nucleus of the inferior colliculus with glass micropipettes filled ...

متن کامل

The Effects of Lidocaine Reversible Inactivation of the Dorsal Raphe Nucleus on Passive Avoidance Learning in Rats

Introduction: The role of serotonergic fibers in avoidance learning is controversial. Involvement of the dorsal raphe nucleus (DRN), the main source of hippocampal projecting serotonergic fibers in acquisition, consolidation and retrieval of passive avoidance (PA) learning, was investigated by functional suppression of this area. Materials and Methods: DRN functional inactivation was done by li...

متن کامل

Descending Connections of Auditory Cortex to theMidbrain and Brain Stem

AI primary auditory cortex AC auditory cortex BDA biotinylated dextran amines BF best frequency CNC cochlear nuclear complex CNIC central of the inferior colliculus DCN dorsal cochlear nucleus DCIC dorsal cortex of the inferior colliculus DNLL dorsal nucleus of the lateral lemniscus DSCF Doppler-shifted constant frequency ECIC external cortex of the inferior colliculus ES electrical stimulation...

متن کامل

Representation of sound localization cues in the auditory thalamus of the barn owl.

Barn owls can localize a sound source using either the map of auditory space contained in the optic tectum or the auditory forebrain. The auditory thalamus, nucleus ovoidalis (N.Ov), is situated between these two auditory areas, and its inactivation precludes the use of the auditory forebrain for sound localization. We examined the sources of inputs to the N.Ov as well as their patterns of term...

متن کامل

Reversible Inactivation and Excitation of Nucleus Raphe Magnus Can Modulate Tail Blood Flow of Male Wistar Rats in Response to Hypothermia

Background: The nucleus raphe magnus (NRM) is involved in thermoregulatory processing. There is a correlation between changes in the firing rates of the cells in the NRM and the application of the peripheral thermal stimulus. Introduction: we examined the effect of reversible inactivation and excitation of NRM on mechanisms involved in tail blood flow (TBF) regulation in hypothermia. Methods: H...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 21 13  شماره 

صفحات  -

تاریخ انتشار 2001